

Lecture on Convolution
and Warping

Madhav Aggarwal

Bilinear Upsampling

Bilinear Interpolation

« Consider the normalized case, where we are interpolating values at the corners of a unit square

 Linearly interpolate the bounding values along one dimension, then linearly interpolate those
along the other

« We can write this out as a simple linear combination of the values at each of our four corners

pr = (1 = x)poo + Xp10
[0 = =0f o) + 5/ (1)) Question:

Poo 10
® @ ® Derive the coefficients of the linear

y combination defined by bilinear
interpolation

pxy
f(x) = (1 -)t + yb _ _
Py Ty f (Poo)

f(P10)
f(Po1)
Lf (P11)

Po1 @—O @, \\ /

pp = (1 —x)po1 + xp11
fpp) = (1 =x)f(Po1) + xf (P11)

X
[a b ¢ d]f

Bilinear Interpolation

« Consider the normalized case, where we are interpolating values at the corners of a unit square

 Linearly interpolate the bounding values along one dimension, then linearly interpolate those
along the other

« We can write this out as a simple linear combination of the values at each of our four corners

Pe = (1 — x)poo + xP10
f(pe) = (A =x)f (Poo) + xf (P10)

Poo ® ,‘ ® P10
i Y f (Poo) (1 —(az)(l ; y)]
xyC') r | f (®©10) ‘ x(l—y
E Fy) = (1= YF(Pe) + ¥ (Py) la b c dl f @o1) (1—x)y
X ! Lf (P11)- i Ty |
po1 @ ‘ @ P11

pp = (1 —x)po1 + xp11
fpp) = (1 =x)f(Po1) + xf (P11)

Try applying what you just learnt!

Find the values at the column 14.5 by first linearly interpolating
between values at 14 and 15 on each row 20 and 21

column —» 15 - 14.5 14.5 - 14
i s I = 7914+ —""".210 = 150.5,
e 0145 = g 17 T 514
P e Sl Ioas = 2140 4y 180714 o5 1085
: LR P — . 21,14.5 — 15 — 14 15 — 14 — «Jy
| Next you interpolate these two values:
~ ={167} {12873} {95 =
I |
21 — 20.2 20.2 — 20
I2145 = —————— - 150.5 + ——— - 128.5 = 146.1.

21 — 20 21 — 20

2D Convolution

Discrete filtering in 2D

« Same equation, one more index

(a*b)i,j] = Za i, 7' bli —4', 5 — 5]
i,g’
* now the filter is a rectangle you slide around over a grid of numbers
« Commonly applied to images
* blurring (using box, using gaussian, ...)
 sharpening (impulse minus blur)

» feature detection (edges, corners, ...)
 in convolutional neural networks (CNNs)

 Usefulness of associativity
- often apply several filters one after another: (((a * b,) * b,) * b,)
- this is equivalent to applying one filter: a * (b, * b, * b,)

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int 2, int 7)

g =)

r = a.radius

for i/ = —rtor do
for ' = —rtordo

s = s+ ali'|[j'1b]i —][5 — j']

return s

9

Building 2D filters

« Almost always, we build 2D filters from 1D filters like this:

* az[i,j] = a4li]as[J]
» This is called a “separable” filter

1D Formula 1D Shape

. erv) fi<n E |‘
BOX wrlil = { otherwise.

ftent
fon() 1—|z| |z| <1, 1
) ent\«L) = .
Teﬂt Jent 0 otherwise;
-1 1
X —

Gaussian: fo(z) = %/

2D Shape

10

Building 2D filters

« Almost always, we build 2D filters from 1D filters like this:

* az[i,j] = a4li]as[J]
» This is called a “separable” filter

1D Formula 1D Shape

. erv) fi<n E |‘
BOX wrlil = { otherwise.

ftent
fon() 1—|z| |z| <1, 1
) ent\«L) = .
Teﬂt Jent 0 otherwise;
-1 1
X —

Gaussian: fo(z) = %/

2D Shape

11

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

HEEEEEEEEE
ENEEEEEEEE
HEN .
HEN HEE
HEN IIII* Ly

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

DODNEEEEEN
DOOEEEEEEE
HEE $BEN
~ BEEN

lll@=

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

HEOOEEEENE
BHEOEEENEN
] N
HEN

EEEEEEEEEE
B

III&= Lyt

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

HEEEONENENE
[.
HEN HEE

HEE * Ly

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

EEEBBEENEN
HEE .
HEN HEE
HEN IIII* Ly

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

e
el

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

SEEEEOOODE.

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

HEN || EEE

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

HE | (EEE
HE | TEE

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

B EE T T |
111]
O 111

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

HEEEEEEEEE EEEEEEEEEE
 mm B o
| PN |

(a*b)| Za i, 7' bli —4', 5 — ']

From Functions of Points to Functions of Neighborhoods

« Pointwise and warping operations express every output value as a function of ONE input value...

« Convolutions express every output point as a linear function of an input neighborhood

| E. |
|
HE

Optimization: separable filters

* basic alg. is 0(r?): large filters get expensive fast!

SEEEEOODE.

—_
(U

S
S

QLT
/
A
I~

Source pixel

~J Convolution kernel
T~ ~ _(emboss)
<1 10 0 T~
&= >
0 4 ~ 4
0 _~~_
0 ~<.

New pixel value

/

Find the filter? Sharpening

What do you think the sharpening filter looks like?

Separable filtering

16(24|16

24(36|24

16(24|16

—=|ala|la|-=-
N YN

010101010 1
010101010 4
— 114641 % 6
0]0]0]0]0 4
0(0|l0]0]0O 1

2_ ol
?:/

second, convolve with this

ﬁrst convolve with this —

Zalj]bz—z,J—J]

28

Optimization: separable filters

* basic alg. is 0(r?): large filters get expensive fast!
* definition: a,[i, j] is separable if it can be written as:

az[i, j] = ai[i]ai|y]
» this is a useful property for filters because it allows factoring:

(ag x b)[i,] = Zzaz i/, 5'1b[i — ', 5 — 5]
—ZZal ar[j'1bli —i',5 — 7]

—Zal (Zalj]b[@l]J])

j/

Side Note on Big O notation

* basic alg. is 0(r?): large filters get expensive fast!
« What do we mean by 0(r%)?

* The O stands for Big O Notation. Used to show algorithmic
complexity.

* 1 is the variable based on which the complexity of the algorithm
varies.

Comparing Big O Functions

Numberof 4 O(2)
Operations

O(n)

O(log n)

O(1)

n
(amount of data)

{C} 2010 Thomas J Cortina, Camege Melion University

>

Optimization: separable filters

« Why is this faster? Let’s talk about the complexity of this operation?

(ag *)i, j] Zzaz i, 510l =i, 5 — ']
:ZZall al]]bi_ilvj_j,]
il g

= Zalm (Zal[j’]b[z‘ —i',j — j’])

lo (T'N dst M. dst)

two-stage resampling using a
separable filter

Fine Details

» What about near the edge?

* the filter window falls off the edge of the image
 need to extrapolate

« methods: ‘
« clip filter (black) .
« wrap around
« copy edge
* reflect across edge
« vary filter near edge

v . I

[Philip Greenspun]

34

A very very short demo on Convolutional Neural Networks

Link

0 0 0 0 0 o o 0 0 0 0 0 0 0 0
0 156 | 155 | 156 | 158 | 158 0 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 153 | 154 | 157 | 159 | 159 0 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 149 | 151 | 155 | 158 | 159 0 160 | 162 | 166 | 169 | 170 0 156 | 158 | 162 | 165 | 166
0 146 | 146 | 149 | 153 | 158 0 156 | 156 | 155 | 163 | 168 0 155 | 155 | 158 | 162 | 167
0 145 | 143 | 143 | 148 | 158 0 155 | 153 | 153 | 158 | 168 0 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
== Y 1 0 0
0 1]-1 1]-1])-1
D[L 110]-1
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
- Output
| J ﬂ
308 + ~498 + 164 +1=-25

I

Bias=1

https://poloclub.github.io/cnn-explainer/

Image Warping

Transformations as Resampling + Interpolation

« Halloween special: Transformations in Horror movies!

Origin Origin

Input Image Transformed Image

https://www.eatmybrains.com/showtopten.php?id=15

Transformations as Resampling + Interpolation

 In assignments 1-2 we used matrices to transform the scene

» Let’s examine the same operation in image space...

Origin Origin

Input Image Transformed Image

Transformations as Resampling + Interpolation

 In assignments 1-2 we used matrices to transform the scene

» Let’s examine the same operation in image space...
Origin

Origin

T1

Input Image Transformed Image

Transformations as Resampling + Interpolation

 In assignments 1-2 we used matrices to transform the scene

» Let’s examine the same operation in image space.

Origin

Input Image Transformed Image

Transformations as Resampling + Interpolation

 In assignments 1-2 we used matrices to transform the scene

» Let’s examine the same operation in image space...

Origin

Input Image Transformed Image

Transformations as Resampling + Interpolation

 In assignments 1-2 we used matrices to transform the scene

» Let’s examine the same operation in image space...

Input Image Transformed Image

Transformations as Resampling + Interpolation

 In assignments 1-2 we used matrices to transform the scene
» Let’s examine the same operation in image space... Transformed input

o L] L] 1 1 t 1. d
» There is no guarantee that transformed values will land on output pixels! plmcts are oL augh
with output pixel grid!

(©) (¢] o o (0]

Input Image Transformed Image ©

(©) (¢] (©)

Transformations as Resampling + Interpolation

« New Strategy: Iterate through output pixels, and for each output pixel look up the matching
input pixel value (with interpolation)

« If M is the matrix that takes geometry from our input scene to our output scene, then M~1 is
the matrix that takes us from our output pixel to its corresponding source pixel

v

v

v

»® Pout

Pin = M_lpout 1

Input Image Output Image

Transformations as Resampling + Interpolation

* You can do a forward warping process. What could be some potential issues with this?

 Basically, finding what portion of the color is distributed to the neighboring pixels when the
input pixel shows up in between pixels of the transformed image?

X X’
O o o o o o o o o o o) 0O O O O O o o o o
0O O o o o o o o o 0o o o o o o o o
o o o @ o o -r o 0O O O O o o©
O O o o o o o v O ©O O‘ Ao ana
o o o o o o o O o o o o o [pout — MpZnJ
O 0 o o O O o o o o 6 o o o o o oo v
O o O o o o o o o o 0O O O O O O o o o o o
O o o o o o o o o o 0O O O O O O o o o o o
Y O o o o o o o o o o Y’ 0O O O O O O o o o o o
O o o o o o o o o o 0O O O O O O o o o o o

(0] o (0] (¢] O
Input Image Transformed Image

Transformations as Resampling + Interpolation

« Or you can do a backward process where you find the color in the output map by mapping and
finding the values from the input image

 In the backward transformation process how do you assign the color of the pixel from the color
of the neighboring pixels? X X’

(®) (@) (@) (@) (0] (®)
Input Image Transformed Image

Transformations as Resampling + Interpolation

« New Strategy: Iterate through output pixels, and for each output pixel look up the matching
input pixel value (with interpolation)

« If M is the matrix that takes geometry from our input scene to our output scene, then M~1 is
the matrix that takes us from our output pixel to its corresponding source pixel

=1 = a)f(Poo) + af (Pr0) 1%

00 t
o9 @
|
i } b
>
W—? fPap) = (1 =Bt + b
a
|
| .
i Bilinear
I Interpolation 1
'I M =TRyT
® P11 o) pout

01
b= (1-a)f(pos) + af (P11)

~~ 1 :M_l out 1

Input Image Output Image

Recap: Nearest Neighbor vs Bilinear Interpolation in Images

0.8
0.6
: 0.4
Nearest Neighbor
Interpolation 0.2

(tiny blur image)

~

1.01

. 0.8
Bilinear

Interpolation 0.6
0.56 0.4
-0.79
-1.01

1.0

Transformations as Resampling + Interpolation

« New Strategy: Iterate through output pixels, and for each output pixel look up the matching
input pixel value (with interpolation)

« If M is the matrix that takes geometry from our input scene to our output scene, then M~1 is
the matrix that takes us from our output pixel to its corresponding source pixel

Viewer/pixel
grid transforms
o o o o / by inverse of
<\ O m . image transform
° = qud B o T A o
2~ Yol 7Y o o ve ;
o o o o P l« £
o o o o 7/ BWS
o o o o o [
o o o o ©
o o o o ,o’/
o o o o
ol o o o
o, o

Scene View of Scene

More on Sampling and Aliasing next class!

» How is this even possible?

07-17-2Z817 10 gl

