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Bilinear Upsampling



Bilinear Interpolation
• Consider the normalized case, where we are interpolating values at the corners of a unit square
• Linearly interpolate the bounding values along one dimension, then linearly interpolate those 

along the other
• We can write this out as a simple linear combination of the values at each of our four corners

𝑝! = (1 − 𝑥)𝑝"" + 𝑥𝑝#"

𝑝!" 𝑝""

𝑝!! 𝑝"!

𝑥

𝑦

𝑓(𝑝$%) = 1 − 𝑦 𝑡	 + 𝑦𝑏

𝑓(𝑝!) = (1 − 𝑥)𝑓(𝑝"") + 𝑥𝑓(𝑝#")

𝑝& = (1 − 𝑥)𝑝"# + 𝑥𝑝##
𝑓(𝑝&) = (1 − 𝑥)𝑓(𝑝"#) + 𝑥𝑓(𝑝##)

𝑝#$

Question:
Derive the coefficients of the linear 
combination defined by bilinear 
interpolation
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Try applying what you just learnt!

Find the values at the column 14.5 by first linearly interpolating 
between values at 14 and 15 on each row 20 and 21

Next you interpolate these two values:



2D Convolution



• Same equation, one more index

• now the filter is a rectangle you slide around over a grid of numbers
• Commonly applied to images

• blurring (using box, using gaussian, …)
• sharpening (impulse minus blur)
• feature detection (edges, corners, …)
• in convolutional neural networks (CNNs)

• Usefulness of associativity
• often apply several filters one after another: (((a * b1) * b2) * b3)
• this is equivalent to applying one filter: a * (b1 * b2 * b3)
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Discrete filtering in 2D
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And in pseudocode…



• Almost always, we build 2D filters from 1D filters like this:
• 𝑎![𝑖, 𝑗] = 𝑎"[𝑖]𝑎"[𝑗]

• This is called a “separable” filter
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Building 2D filters

Box:

Tent:

Gaussian:

1D Formula 1D Shape 2D Shape



• Almost always, we build 2D filters from 1D filters like this:
• 𝑎![𝑖, 𝑗] = 𝑎"[𝑖]𝑎"[𝑗]

• This is called a “separable” filter

11

Building 2D filters

Box:

Tent:

Gaussian:

1D Formula 1D Shape 2D Shape



From Functions of Points to Functions of Neighborhoods
• Pointwise and warping operations express every output value as a function of ONE input value…
• Convolutions express every output point as a linear function of an input neighborhood
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• basic alg. is 𝑂(𝑟+): large filters get expensive fast!
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Optimization: separable filters
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original | box blur sharpened | gaussian blur
[Philip Greenspun]
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Find the filter? Sharpening

⎡

⎣

0 −1 0

−1 5 −1

0 −1 0

⎤

⎦

What do you think the sharpening filter looks like?
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Separable filtering

first, convolve with this

second, convolve with this

= *



• basic alg. is 𝑂(𝑟+): large filters get expensive fast!
• definition: 𝑎+[𝑖, 𝑗] is separable if it can be written as:

• this is a useful property for filters because it allows factoring:
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Optimization: separable filters



• basic alg. is 𝑂(𝑟+): large filters get expensive fast!
• What do we mean by 𝑂(𝑟!)?
• The 𝑂 stands for Big O Notation. Used to show algorithmic 

complexity.
• r is the variable based on which the complexity of the algorithm 

varies.
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Side Note on Big O notation





• Why is this faster? Let’s talk about the complexity of this operation?
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Optimization: separable filters



two-stage resampling using a
separable filter
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• What about near the edge?
• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge
• vary filter near edge
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Fine Details
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Link

A very very short demo on Convolutional Neural Networks

https://poloclub.github.io/cnn-explainer/


Image Warping



Transformations as Resampling + Interpolation
• Halloween special: Transformations in Horror movies!

Input Image Transformed Image

Origin Origin

https://www.eatmybrains.com/showtopten.php?id=15


Transformations as Resampling + Interpolation
• In assignments 1-2 we used matrices to transform the scene
• Let’s examine the same operation in image space…

Input Image Transformed Image

Origin Origin
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• In assignments 1-2 we used matrices to transform the scene
• Let’s examine the same operation in image space…
• There is no guarantee that transformed values will land on output pixels!

Transformations as Resampling + Interpolation

Transformed ImageInput Image

Transformed input 
pixels are not aligned 
with output pixel grid!



Transformations as Resampling + Interpolation
• New Strategy: Iterate through output pixels, and for each output pixel look up the matching 

input pixel value (with interpolation)
• If 𝐌 is the matrix that takes geometry from our input scene to our output scene, then 𝐌$𝟏 is 

the matrix that takes us from our output pixel to its corresponding source pixel

Input Image Output Image



• You can do a forward warping process. What could be some potential issues with this?
• Basically, finding what portion of the color is distributed to the neighboring pixels when the 

input pixel shows up in between pixels of the transformed image?

Transformations as Resampling + Interpolation

Transformed ImageInput Image

X

Y

X’

Y’



• Or you can do a backward process where you find the color in the output map by mapping and 
finding the values from the input image

• In the backward transformation process how do you assign the color of the pixel from the color 
of the neighboring pixels?

Transformations as Resampling + Interpolation

Transformed ImageInput Image

X

Y

X’

Y’



Transformations as Resampling + Interpolation
• New Strategy: Iterate through output pixels, and for each output pixel look up the matching 

input pixel value (with interpolation)
• If 𝐌 is the matrix that takes geometry from our input scene to our output scene, then 𝐌$𝟏 is 

the matrix that takes us from our output pixel to its corresponding source pixel

Input Image Output Image

𝑏 = (1 − 𝛼)𝑓(𝑝!") + 𝛼𝑓(𝑝"")
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Bilinear 
Interpolation



Recap: Nearest Neighbor vs Bilinear Interpolation in Images

(tiny blur image)

Nearest Neighbor 
Interpolation

Bilinear
Interpolation



Transformations as Resampling + Interpolation
• New Strategy: Iterate through output pixels, and for each output pixel look up the matching 

input pixel value (with interpolation)
• If 𝐌 is the matrix that takes geometry from our input scene to our output scene, then 𝐌$𝟏 is 

the matrix that takes us from our output pixel to its corresponding source pixel

Scene View of Scene

Viewer/pixel 
grid transforms 
by inverse of 

image transform



More on Sampling and Aliasing next class!
• How is this even possible?




