Lecture on Convolution and Warping

Madhav Aggarwal

Bilinear Upsampling

Bilinear Interpolation

- Consider the normalized case, where we are interpolating values at the corners of a unit square
- Linearly interpolate the bounding values along one dimension, then linearly interpolate those along the other
- We can write this out as a simple linear combination of the values at each of our four corners

Question:

Derive the coefficients of the linear combination defined by bilinear interpolation

$$\begin{bmatrix} a & b & c & d \end{bmatrix}^T \begin{bmatrix} f(p_{00}) \\ f(p_{10}) \\ f(p_{01}) \\ f(p_{11}) \end{bmatrix}$$

Bilinear Interpolation

- Consider the normalized case, where we are interpolating values at the corners of a unit square
- Linearly interpolate the bounding values along one dimension, then linearly interpolate those along the other
- We can write this out as a simple linear combination of the values at each of our four corners

Try applying what you just learnt!

Find the values at the column 14.5 by first linearly interpolating between values at 14 and 15 on each row 20 and 21

$$egin{aligned} I_{20,14.5} &= rac{15-14.5}{15-14} \cdot 91 + rac{14.5-14}{15-14} \cdot 210 = 150.5, \ I_{21,14.5} &= rac{15-14.5}{15-14} \cdot 162 + rac{14.5-14}{15-14} \cdot 95 = 128.5, \end{aligned}$$

Next you interpolate these two values:

$$I_{20.2,14.5} = rac{21-20.2}{21-20} \cdot 150.5 + rac{20.2-20}{21-20} \cdot 128.5 = 146.1.$$

2D Convolution

Discrete filtering in 2D

• Same equation, one more index

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- now the filter is a rectangle you slide around over a grid of numbers
- Commonly applied to images
 - blurring (using box, using gaussian, ...)
 - sharpening (impulse minus blur)
 - feature detection (edges, corners, ...)
 - in convolutional neural networks (CNNs)
- Usefulness of associativity
 - often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int i, int j) s = 0 r = a.radius for i' = -r to r do for j' = -r to r do s = s + a[i'][j']b[i - i'][j - j']return s

Building 2D filters

- Almost always, we build 2D filters from 1D filters like this:
 - $a_2[i,j] = a_1[i]a_1[j]$
- This is called a "separable" filter

Building 2D filters

- Almost always, we build 2D filters from 1D filters like this:
 - $a_2[i,j] = a_1[i]a_1[j]$
- This is called a "separable" filter

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- Pointwise and warping operations express every output value as a function of ONE input value...
- Convolutions express every output point as a *linear* function of an input *neighborhood*

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

Optimization: separable filters

• basic alg. is $O(r^2)$: large filters get expensive fast!

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

[Philip Greenspun] original∆ |_▼ box blur

sharpened $\Delta | \nabla gaussian$ blur

Find the filter? Sharpening

What do you think the sharpening filter looks like?

 $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

Separable filtering

$$a_2[i,j] = a_1[i]a_1[j]$$

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: *a*₂[*i*, *j*] is *separable* if it can be written as:

$$a_2[i,j] = a_1[i]a_1[j]$$

• this is a useful property for filters because it allows factoring:

$$(a_{2} \star b)[i, j] = \sum_{i'} \sum_{j'} a_{2}[i', j']b[i - i', j - j']$$
$$= \sum_{i'} \sum_{j'} a_{1}[i']a_{1}[j']b[i - i', j - j']$$
$$= \sum_{i'} a_{1}[i'] \left(\sum_{j'} a_{1}[j']b[i - i', j - j']\right)$$

Side Note on Big O notation

- basic alg. is $O(r^2)$: large filters get expensive fast!
- What do we mean by $O(r^2)$?
- The *O* stands for Big O Notation. Used to show algorithmic complexity.
- r is the variable based on which the complexity of the algorithm varies.

(C) 2010 Thomas J Cortina, Carnegie Mellon University

Optimization: separable filters

• Why is this faster? Let's talk about the complexity of this operation?

$$(a_{2} \star b)[i, j] = \sum_{i'} \sum_{j'} a_{2}[i', j']b[i - i', j - j']$$
$$= \sum_{i'} \sum_{j'} a_{1}[i']a_{1}[j']b[i - i', j - j']$$
$$= \sum_{i'} a_{1}[i'] \left(\sum_{j'} a_{1}[j']b[i - i', j - j']\right)$$

Fine Details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge
 - vary filter near edge

A very very short demo on Convolutional Neural Networks

Link

....

....

....

....

....

Image Warping

• Halloween special: <u>Transformations in Horror movies</u>!

- In assignments 1-2 we used matrices to transform the scene
- Let's examine the same operation in image space...

- In assignments 1-2 we used matrices to transform the scene
- Let's examine the same operation in image space...

- In assignments 1-2 we used matrices to transform the scene
- Let's examine the same operation in image space.

- In assignments 1-2 we used matrices to transform the scene
- Let's examine the same operation in image space...

- In assignments 1-2 we used matrices to transform the scene
- Let's examine the same operation in image space...

- In assignments 1-2 we used matrices to transform the scene
- Let's examine the same operation in image space...
- There is no guarantee that transformed values will land on output pixels!

Transformed input

pixels are not aligned

- **New Strategy**: Iterate through output pixels, and for each output pixel look up the matching input pixel value (with interpolation)
- If **M** is the matrix that takes geometry from our input scene to our output scene, then M^{-1} is the matrix that takes us from our output pixel to its corresponding source pixel

- You can do a forward warping process. What could be some potential issues with this?
- Basically, finding what portion of the color is distributed to the neighboring pixels when the input pixel shows up in between pixels of the transformed image?

- Or you can do a backward process where you find the color in the output map by mapping and finding the values from the input image
- In the backward transformation process how do you assign the color of the pixel from the color of the neighboring pixels? X X'

- **New Strategy**: Iterate through output pixels, and for each output pixel look up the matching input pixel value (with interpolation)
- If **M** is the matrix that takes geometry from our input scene to our output scene, then **M**⁻¹ is the matrix that takes us from our output pixel to its corresponding source pixel

Recap: Nearest Neighbor vs Bilinear Interpolation in Images

- **New Strategy**: Iterate through output pixels, and for each output pixel look up the matching input pixel value (with interpolation)
- If **M** is the matrix that takes geometry from our input scene to our output scene, then M^{-1} is the matrix that takes us from our output pixel to its corresponding source pixel

More on Sampling and Aliasing next class!

• How is this even possible?

