Global PageRank

* PageRank is an algorithm of measuring the importance of website pages.

PR(vj)

1-«a
. PR(UL) = e + a X ZvjEN(vi)ij)

* Vectorize representation:
¢« 7= aPF+%(1—a)T
( 0) L2z 142 0
1/2 0 1/2 0
pr=|1/3 1/3 0 1/3
0 0 1/2 0
\ 0 0 0 1




Calculate global PageRank

* |terative process: Each vertex is initialized with a random PageRank
value. lteratively apply the transition function until convergence

PR (v))

1_
* PRED(v) = Ta T aX 2yjeny) L(v;)

—_—

o 7(E+1) = gPr(® + % (1-a)l

e Output: global importance of each vertex



Personalized PageRank

* global PageRank:

- - 1 .
°r=aPr+E(1—a)1 _
T Randomly start from some vertex,

each vertex has equal probability

R R R R

* Personalized PageRank:
*7r=aPr+ (1—-a)s

N\

Start from
target vertex

:OOOHo:




Accuracy and latency issue of PPR

* Treat PPR as a linear equation:
c7={0—aP) (1 - a)s
* Exact answer of PPR (very accurate)
 Need to calculate the inverse of the transition matrix 0(n3)



Fast and approximate algorithm

* Information propagate in a local range, no need to apply the full
transition matrix.



Graph Diffusion algorithm

* MELOPPR: Software/Hardware Co-design for Memory-efficient

Low-latency Personalized PageRank

e Starting from target vertices, iteratively distribute the PageRank value

to the neighbors

* Propagate k iterations -> can reach k
hop neighbors

* k — hop neighbors grows
exponentially, large memory
requirement

* More iteration higher accuracy

n(v1)=1 m(v,)=0 0 1/3 1/10 = 3/10 3/5 11/60
O— @—w @ @—)
Seed v — ‘ — Ly /20 ‘ —
) (@ (@ (@ ) vy ()
m(v3)=0 m(vy)=0 1/3 1/3 3/10 3/10 1/30 11/60

Accumulate

T T
So=[1,0.0,07 ws,=[0,2,3,3]" Si= (-0 -+aws, WS, =[23 44
S, =[0,0,0,0]" a=1/10 = [T



Multi-stage PPR

* PPR has linearity
« PPR(wu + wy,v) = wy * PPR(u) + w, * PPR(V)

Low space, high accesses Low accesses, high space Balanced space and accesses (Ours)
*  On-chip memory overhead : 0 *  On-chip memory overhead : 0(G,) *  On-chip memory overhead : 0(G;)
*  Off-chip memory access : 0(G}) * Off-chip memory access : 0 * Off-chip memory access : 0(G;)
hi g7 @ sced nod

Off-chip V7 On-chip V7 Off-chip memory ¢ v, 3 Sub-graph eed node

memory memory \ access when // \\ /’ @ Off-chip memory storage

access access Vg hecessary /’ vg

- — l{v E— :/ g On-chip memory storage
2 (2 12" Sub-graph
V1 I'~ X e > —p Off-chip memory access
Ve V3 Ve V3 S )

Vs/ On-chip memory access
On-ghip memory access

1t Sub-grap\h\\\ e
(a) (b) (c)




Multi-stage PPR

* k iterations = [; + [, = k iteration

* Example; 2 iterations > 1+ 1 = 2
iteration

* In the first [, iteration, reach the [
hop neighbors of the target vertex.
Then start from each [; hop

neighbors, perform PPR [, iteration.

» GD'(S): pagerank vector start from
initialization for [ iterations.

-

/-\,—-

Off-chip memory ¢ v, 3" Sub-graph @ sced node
access when \ |
/ \ / @ off-chip memory storage
/7

necessary vg
/ N o

l "~ On-chip memory storage

v2 2" Sub-graph
.\< v, / S —p Off-chip memory access

v .
3 Vs 1 On-chip memory access
On-chip memory access
v
1% Sub- gragh S 5

(c)

o

gD(ll+l2)(SO) _ Q’D(ll)(so) — Slrl

> g™ (s7 )

vEG, (8)



MELOPPR

* Fast, memory efficient
* No guaranteed error bound

* Error measure:

« T(s,k): top — k important vertices selected by the algorithm

* T(s,k): top — k important vertices in the ground truth
* Precision: prec(s, k) = |{v|v eT(s,k)Ac €T(s, k)}|

Speedup

8.19x
8

5 ois*

/k

416.8x youtube

3 4 S 6 7 8 9 10 1 12 1
# of next-stage nodes

970 Ol O SOT2 W02 0 |

Top-k Precision



Approximate Personalized PageRank using local push

After O iterations

p=0.00
r=1.00

0.00 After 2 iterations
0.32

p=0.16 p=0.20
r=0.00 r=0.64

P=0.00 after 4 iterations
r=0.58

p=0.16 p=0.33
r=0.51 r=0.00

After 6 iterations

p=0.26 p=0.33

r=0.00 r=0.41

After 1 iteration

p=0.00 p=0.20
r=0.80 r=0.00

0.00 After 3 iterations
0.32

p=0.16 p=0.33
r=0.51 r=0.00

After 5 iterations

p=0.16 p=0.33
r=0.51 r=0.00

-32After 41 iterations

p=0.44 p=0.55
r=0.01 r=0.00

ApproximatePageRank (v, €):
1. Let p= 0, and r = Wiz

r(u)

2. While maXyecy W) Z €.

(a) Choose any vertex u where -

b) Apply push, at vertex u, updating p and 7.
push,

3. Return p, which satisfies p = apr(«, xy, ) with max,cy % <e.

push, (p, 7):

1. Let p’ = p and ' = r, except for the following changes:

(a) p'(u) = p(u) + ar(w).
(b) r(u) = (1 — a)r(u)/2.

(c) For each v such that (u,v) € E:

2. Return (p/,7").

r'(v) = r(©) + (1 = a)r(u)/(2d(w)).




local push

e Convergent until an error bound € is reached
* No guaranteed execution time

* The computation complexity has a upper bound 0(%)

* Can be applied to dynamic graph:
* Approximate Personalized PageRank on Dynamic Graphs

* When a new edge is added, the complexity of updating the PPR has the
complexity of O(1).



