Global PageRank

* PageRank is an algorithm of measuring the importance of website pages.
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Calculate global PageRank

* |terative process: Each vertex is initialized with a random PageRank
value. lteratively apply the transition function until convergence
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e Output: global importance of each vertex



Personalized PageRank

* global PageRank:
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T Randomly start from some vertex,

each vertex has equal probability
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* Personalized PageRank:
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Accuracy and latency issue of PPR

* Treat PPR as a linear equation:
c7={0—aP) (1 - a)s
* Exact answer of PPR (very accurate)
 Need to calculate the inverse of the transition matrix 0(n3)



Fast and approximate algorithm

* Information propagate in a local range, no need to apply the full
transition matrix.



Graph Diffusion algorithm

* MELOPPR: Software/Hardware Co-design for Memory-efficient

Low-latency Personalized PageRank

e Starting from target vertices, iteratively distribute the PageRank value

to the neighbors

* Propagate k iterations -> can reach k
hop neighbors

* k — hop neighbors grows
exponentially, large memory
requirement

* More iteration higher accuracy
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Multi-stage PPR

* PPR has linearity
« PPR(wu + wy,v) = wy * PPR(u) + w, * PPR(V)

Low space, high accesses Low accesses, high space Balanced space and accesses (Ours)
*  On-chip memory overhead : 0 *  On-chip memory overhead : 0(G,) *  On-chip memory overhead : 0(G;)
*  Off-chip memory access : 0(G}) * Off-chip memory access : 0 * Off-chip memory access : 0(G;)
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Multi-stage PPR

* k iterations = [; + [, = k iteration

* Example; 2 iterations > 1+ 1 = 2
iteration

* In the first [, iteration, reach the [
hop neighbors of the target vertex.
Then start from each [; hop

neighbors, perform PPR [, iteration.
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MELOPPR

* Fast, memory efficient
* No guaranteed error bound

* Error measure:

« T(s,k): top — k important vertices selected by the algorithm

* T(s,k): top — k important vertices in the ground truth
* Precision: prec(s, k) = |{v|v eT(s,k)Ac €T(s, k)}|
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Approximate Personalized PageRank using local push

After O iterations

p=0.00
r=1.00

0.00 After 2 iterations
0.32

p=0.16 p=0.20
r=0.00 r=0.64

P=0.00 after 4 iterations
r=0.58

p=0.16 p=0.33
r=0.51 r=0.00

After 6 iterations

p=0.26 p=0.33

r=0.00 r=0.41

After 1 iteration

p=0.00 p=0.20
r=0.80 r=0.00

0.00 After 3 iterations
0.32

p=0.16 p=0.33
r=0.51 r=0.00

After 5 iterations

p=0.16 p=0.33
r=0.51 r=0.00

-32After 41 iterations

p=0.44 p=0.55
r=0.01 r=0.00

ApproximatePageRank (v, €):
1. Let p= 0, and r = Wiz

r(u)

2. While maXyecy W) Z €.

(a) Choose any vertex u where -

b) Apply push, at vertex u, updating p and 7.
push,

3. Return p, which satisfies p = apr(«, xy, ) with max,cy % <e.

push, (p, 7):

1. Let p’ = p and ' = r, except for the following changes:

(a) p'(u) = p(u) + ar(w).
(b) r(u) = (1 — a)r(u)/2.

(c) For each v such that (u,v) € E:

2. Return (p/,7").

r'(v) = r(©) + (1 = a)r(u)/(2d(w)).




local push

e Convergent until an error bound € is reached
* No guaranteed execution time

* The computation complexity has a upper bound 0(%)

* Can be applied to dynamic graph:
* Approximate Personalized PageRank on Dynamic Graphs

* When a new edge is added, the complexity of updating the PPR has the
complexity of O(1).



