


(Hinton 2006)

How the brain works: deep leaming



http://www.youtube.com/watch?v=mlXzufEk-2E

TOPTCS I"LL BE PRESENTING TODAY

1. How to start with Deep Learning?
- Courses

- Coding Packages

- Logistics

- Simulation Environments

2. Computer Vision

- ImageNet Challenge

- YOLO

- Visual attention and saliency

- Image Captioning

- Feature Visualization for Deep Networks



TOPTCS I"LL BE PRESENTING TODAY

3. Generative Models

- Generative Adversarial Networks
4, Deep Learning Models and Architectural breakthroughs

— Capsule networks
5. Reinforcement Learning

- Deep RL
- Inverse Reinforcement Learning (IRL)



AND LOTS OF THIS!
T00 M}GH DATA TO/ANALYZE.
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WE NEED T0.GO DEEPER




HOW T0 START WLTH DEEP LEARNING

COURSES:

[Coursera] Neural Networks for Machine Learning — Geoffrey
Hinton 2016

Deeplearning.ai course playlist - Andrew Ng - 4 courses

CS 294: Deep Reinforcement Learning, Fall 2017

Papers:

Arxiv Sanity Preserver



https://www.youtube.com/playlist?list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9
https://www.youtube.com/playlist?list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9
https://www.youtube.com/channel/UCcIXc5mJsHVYTZR1maL5l9w/playlists
http://rll.berkeley.edu/deeprlcourse/
http://www.arxiv-sanity.com/

HOW T0 START WLTH DEEP LEARNING

CODING PLATFORMS:

1. Tensorflow - static computation graphs,

resources
2. Keras - Front end library
3. PyTorch - DCG, modular,imperative programming

4, Caffe - C++ based
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HOW T0 START WLTH DEEP LEARNING

LOGISTICS:

Cloud: Cloud AI - Google Cloud

AWS Deep Learning in the Cloud

Desktop: Deep learning setup for Ubuntu 16.04 —-- with CUDA installation

Datasets: Kaggle

Datasets @ Deeplearning.net

Open Data for Deep Learning



https://cloud.google.com/products/machine-learning/
https://aws.amazon.com/machine-learning/amis/
https://medium.com/@vivek.yadav/deep-learning-setup-for-ubuntu-16-04-tensorflow-1-2-keras-opencv3-python3-cuda8-and-cudnn5-1-324438dd46f0
https://www.kaggle.com/
http://deeplearning.net/datasets/
https://deeplearning4j.org/opendata

HOW T0 START WLTH DEEP LEARNING

SIMULATION ENVIRONMENTS (ESPECIALLY FOR REINFORCEMENT
LEARNING PROBLEMS)

1. OpenAI Gvym

2. Carla - Open-source simulator for autonomous driving
research

3. AirSim - Open source simulator based on Unreal Engine for
autonomous vehicles from Microsoft AT & Research



https://github.com/openai/gym
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/Microsoft/AirSim
https://github.com/Microsoft/AirSim

“Generalizing”

My HOBRY: EXTRAFOLATING

AS YOU CAN SEE, BY LATE
NEXT MONTH YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS.
BETTERGET A

BULK RATE ON
WEDDING CAKE.
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RESEARCH GROUPS TO LOOK 0UT FOR

. Google Brain and DeepMind
. OpenAl

. EAIR

. UToronto Machine Learning
. MILA

. Baidu AT



https://research.google.com/teams/brain/
https://deepmind.com/
https://openai.com/
https://research.fb.com/category/facebook-ai-research-fair/
http://www.cs.toronto.edu:40292/
https://mila.quebec/
http://research.baidu.com/

[EADING DEEP LEARNING RESEARCHERS







'S MOVETO V-1-5-1-0-N

ImageNet

Challenge

IMAGENET

Large-scale Dataset for Image Classification

I M - G E N E 14,197,122 images, 21841 synsets indexed
‘e I

Explore Download Challenges Publications CoolStuff About

Not logged in. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have
an average of over five hundred images per node. We hope ImageNet will become a useful resource for
researchers, educators, students and all of you who share our passion for pictures.

Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.

What do these images have in common? Find out!

Check out the ImageNet Challenge on Kaggle!



CONVNET ARCHITECTURES

AlexNet (2012): The Return of Convolutional Neural Networks
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Repopularized convolutional networks by winning the Imagenet Challenge in 2012 [Krizhevsky et al. 2012].
Error of 16% vs 26% for second place!

(H-O)-(H- O HHHDH - O-O-(O

7 Hidden Layers, 650,000 neurons, 60 Million parameters



COMPUITER VISION

S
IS EVERYWHERE



{0L0 - YOU ONLY LOOK ONCE



http://www.youtube.com/watch?v=VOC3huqHrss

Y0L0

- Different types of anchor-boxes

- Divide dmages 1into a grid and input each cell
to the NN

- Make predictions (during testing) for each of
them

- Use non-max suppression for finding outputs

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016.

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." arXiv preprint arXiv:1612.08242 (2016).



{0L0 - FRAMEWORK

Bounding boxes + confidence

S x S grid on input Final detections

Class probability map



{0L0 - NEURAL NET ARCH

3 | 8 |

- SR
F] w2 %4 m 1024 1024 a4 »
Conv, Laywr Conv, Loyee  Conv, Layers Conv. Loysrs  Conv.Laysrs  Conv.layers  Conn. Loyer  Conn, Loyer
Tx7xbby2 Ix3x192 1x1x128 1x1x256 1 0q 112512 1, 3x3x1024
Maxpool Layer  Moxpool layer  3x3x256 13512 331024 ™ 2xax1024
2242 2242 1x1x256 112512 3x3x1024

3x3x512 3x3x1024 Ix3x102442

Moxpool Layer  Maxpocl Loyer

2:2+2 2242

Figure 3: The Architecture, Our detection network has 24 convolutional layers followed by 2 fully connected layers, Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.



VISUAL ATTENTION AND SALTENCY A.K.A WHERE T0 LOOK!

Liu, Nian, et al. "Predicting eye fixations using convolutional neural networks." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015.



PREDICTING EYE FLXATIONS USING CNN - (VPR 2015

Training

50 locations

Testing

250=250

Saliency map
Testing image -_> - R . e e e

150=150

Figure 1: Diagram of our Mr-CNN based model. First, the given image is rescaled to three scales, 1.e. 150x150, 250x250 and 400x400,
then 42x42 sized image regions with the same center locations are extracted from the rescaled image duplicates as inputs to the Mr-CNN.
We extract fixation and non-fixation image regions to train the Mr-CNN. When testing, we just evenly sample 50x50 locations per image
to estimate their saliency values to reduce computation cost. The obtained down-sampled saliency map is rescaled to the original size to
achieve the final saliency map.



IMAGE CAPTIONING

man in black shirt is playing guitar. construction worker in orange safety two young girls are playing with lego boy is doing backflip on wakeboard.
vest is working on road. toy.

(from Andrej Karpathy, Li Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, CVPR, 2015.)



EXPLATN IMAGES WITH MULTIMODAL RNNS - BAIDU RESEARCH

Input Word --- Recurrent Multimodal Next Word
e mRNN —————————== e e e el
Input Word | model for ® #HSTARTHES EeS
Layer w one time
- B
| I l ] I ] frame @~ | —— = = = = — - - - — — — —
Recurrent D unfold & it £ .
Layerr @ wit-1) ir(t- 1) y(t-1)
o L 1 ﬁ |
Layery T 1
wi(t) r(0) vit) jungle e [t} D
(a) (©
Fully ¢ n
Deep Image Feature Extraction
M
Table Sample/ Q
: : Projection Max ’< ) O
Input Next =
Voo Weed )
Embedding 1 mbeddi ) Mulli.fvnoda] SoftMax  rullv Conne lmage[;eatum Deep CNN Image

Figure 2: Illustration of the simple Recurrent Neural Network (RNN) and our multimodal Recurrent
Neural Network (m-RNN) architecture. (a). The simple RNN. (b). Our m-RNN model. The input
of our model is an image and its corresponding sentences (e.g. the sentence for the shown image is:
a man at a giant tree in the jungle). The model will estimate the probability distribution of the next
word given previous words and the image. This architecture is much deeper than the simple RNN.
(c). The illustration the unfolded m-RNN. The model parameters are shared for each temporal frame
of the m-RNN model.



Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

FEATURE
VISUALLZATION
FOR DEEP
NETWORKS




UNDERSTANDING REPRESENTATIONS IN DEEP NETS - WHY!

- If we don’t understand what the network is learning, we
can’t tune it to what we want it to learn. A black-box
genius is of very little use.

- Explainable AI: AI systems are exceeding human level
intelligence at complex tasks. Lack of transparency can
be a major drawback.

- If the features learnt by the system are not understood,
the network will be even more prone to adversarial
attacks.



Visualization

PET PEEVE #208:

GEOGRAPHIC PROFLE MAPS WHICH PRE
BAOWCALLY JUST FORXATION MAPS




PAPERS T0 READ

e Karel Lenc, Andrea Vedaldi, Understanding image representations by measuring their equivariance and equivalence,
CVPR, 2015. [Paper]

e Anh Nguyen, Jason Yosinski, Jeff Clune, Deep Neural Networks are Easily Fooled:High Confidence Predictions for
Unrecognizable Images, CVPR, 2015. [Paper]

e Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015.
[Paper]

e Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Object Detectors Emerge in Deep Scene
CNNs, ICLR, 2015. [arXiv Paper]

e Alexey Dosovitskiy, Thomas Brox, Inverting Visual Representations with Convolutional Networks, arXiv, 2015.

[Paper]
e Matthrew Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV, 2014. [Paper]


http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.pdf
http://arxiv.org/abs/1412.6856
http://arxiv.org/abs/1506.02753
https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
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GENERATIVE MODELS



Generative Models

Given training data, generate new samples from the same distribution.

Traihing da't‘e Generated Samples
Pdata(X) Pmodel(X)

We want to learn pmodei(X) similar to pdata(X) .



GENERATIVE ADVERSARIAL NETWORKS - GANS

- For each mistake on a fake image, the discriminator gets
penalized and the generator gets a rewarded.

- Adversarial—the discriminator’s loss is the generator’s gain

- competition leads to mutual improvement.

&=
G(z) \ Probability input is

? > real:

D(x) or D(G(2))
X

Noise, z




D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

)

D

i sampled from
model

Differentlable
function G

Input noise z )

D(x) tries to be
near 1

*

( Differentiable

function D

)

z sampled from
data

@ W W
& h A & 4

(Goodfellow 2016)



"Generative Adversarial Networks is the most interesting

idea in the last ten years in machine learning."
Yann LeCun, Director, Facebook Al



Deep Convolutional GANs

Fun Operations

man man woman
with glasses without glasses without glasses

woman with glasses

A. Radford, L.Metiz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. ICLR 2016.



Image-to-lmage Translation

Labels to Street Scene Labels to Facade BW to Color

5] i!l

e ] | ‘?f_ r‘.”u
input oupul input output
Day to Night 2 Edges to Photo

l - T “ -. ﬂ
| \

|

|

|

output - input output input output

Popularly known as Pix2Pix.

P. Isola, J. Zhu, T. Zhou, A. Efros. Image-to-Image Translation with Convolutional Adversarial Networks.
CVPR 2017



Unpaired Image-to-lmage Translation

Input Cezanne

W,

J. Zhu, T. Park, P. Isola, A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. In ICCV 2017.
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CNN ARCHITECTURE

fully fully

convi conv2 ot connected connected

convd

convb

fully
Max connected
pooling
Drop DropHSOﬁ.-

Qut

Out  max
2

64x64
1- or 2-channel

Max Max
64 pooling 192 pooling 384

256 256

4098 4096



EQUIVARIANCE V5 INVARIANCE

The pooling operation tries to make the NN
invariant to small changes 1n viewpoint.

This leads to a complication that spatial
information being lost during pooling, hence
making a CNN dumb.

Equivariance means that changes in viewpoints
will correspond to a change in the firing of the

neurons, hence learning richer representations of
the data.



CAPSULE NETWORKS - HINTO

person

reddish orange color
light brown color
starlet

entertainer

female

woman

young lady (heroine)

person

light brown color
starlet

entertainer

female

woman

young lady (heroine)
reddish orange color

newsreader

|

\ A )

A

Hinton: “The pooling
operation used in
convolutional neural
networks is a big
mistake and the fact
that it works so well
is a disaster.”



CAPSULE NETWORKS

— CNNs do routing by pooling

- A nested layer inside a layer can be called a ‘capsule’

- State of the art for MNIST

- Introduces dynamic routing in between convolutional
layers

- Layer-based squashing - instead of applying ReLU to each
neuron separately, we apply it to the grouped neurons as
a vector (capsule)

- Capsule networks essentially encodes important routing
information in the capsules, and uses this info during
the forward pass



CAPSULE NETWORK ARCHITECTURE

16
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https://arxiv.org/pdf/1710.09829.pdf



ONE DOES IIIIT SIMPLY
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REINFORCEMENT LEARNING



http://www.youtube.com/watch?v=tXlM99xPQC8

Every motion the
stick figure is making ...


http://www.youtube.com/watch?v=gn4nRCC9TwQ

RELNFORCEMENT LEARNING BASICS

Basic idea:

Receive feedback in the form of rewards

Agent’s utility is defined by the reward function

Must (learn to) act so as to maximize expected rewards

All learning is based on observed

State: s
Reward: r

samples of outcomes!

Environm
ent




Offline (MDPs) vs. Online (RL)

Offline Online
Solution Learning



Passive Reinforcement Learning

= Simplified task: policy evaluatio
" Input: a fixed policy n(s)
* You don’t know the transitions T(s,
* You don’t know the rewards R(s,a,:
" Goal: learn the state values

" |n this case:
* Learneris “along for the ride”
* No choice about what actions to take
* Just execute the policy and learn from experience
* This is NOT offline planning! You actually take actions in the world.



Active Reinforcement Learning

* Full reinforcement learning: optimal policies (like
value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’'t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

" |n this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the
world and find out what happens...



NOT SURE IF REINFORGEMENT LEARNING
TECHNIQUE ALGORITHM WORKS




Al in the News - Flappy Bird RL

State space

* Discretized vertical distance from lower pipe
= Discretized horizontal distance from next pair
* Life: Dead or Living

Actions

" Click

* Do nothing

Rewards

* +1 if Flappy Bird still alive
* -1000 if Flappy Bird is dead

6-7 hours of Q-learning




Feature-Based Representations

Solution: describe a state using a vector
of features (properties)

* Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

* Example features:

Distance to closest ghost

* Distance to closest dot

Number of ghosts

1 / (dist to dot)?

Is Pacman in a tunnel? (0/1)

...... etc.

Is it the exact state on this slide?

* Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)
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Imitation Learning

\
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training supervised

data learning o (a,, ‘O' )

Images: Bojarski et al. “16, NVIDIA



Where does the reward function come from?

Computer Games Real World Scenarios
reward

robotics dialog autonomous driving
i AN R

Mnih et al. ‘15 what is the reward?
often use a proxy

frequently easier to provide expert data
Inverse reinforcement learning: infer reward function from roll-outs of expert policy

slides adapted from C. Finn




A bit more formally

“forward” reinforcement learning

given:
states s € S, actions a € A
(sometimes) transitions p(s’|s, a)

reward function r(s,a)

learn 7*(als)

neural net reward function:

linear reward function:

7w s,a) Z wzfz(s a) wa(Saa)

inverse reinforcement learning

given:
states s € S, actions a € A
(sometimes) transitions p(s’|s,a)

samples {7;} sampled from 7*(7)

learn 7, (s, a)

L__ reward parameters

...and then use it to learn 7*(als)

’I‘¢(S, a)

s &
a - :
: ¢ parameters ¢




IRL as adversarial optimization

Guided Cost Learning Generative Adversarial Imitation Learning
ICML 2016 Ho & Ermon, NIPS 2016 , .
Humanoid expert policies
= g 5 y : Run forwards Run backwards Balance
minimized maximized False True
A » - »
reward function classifier

- -~ 3 -

- human o human
demonstrations demonstrations

robot attempt robot attempt

learns distribution p(7) such that D(T) — probability 7 is a demo
. . S— (S0 8 '(“ s L ;
demos have max likelihood

p(7) < exp(r(7)) (MaxEnt model) use log D(7) as “reward”
705) actually the D(7) = some classifier
e same thing!

Imitation of running and turning

B % exp(r(7)
- % exp(r(7)) +

Merel, Tassa, TB, Srinivasan, Lemmon, Wang, Wayne, Heess

D(t



If | let you make me nervous, thenjwe]can;t get;schwifty.




PAPERS T0 READ - TRL

Abbeel & Ng ICML ’04. Apprenticeship Learning via Inverse Reinforcement
Learning. Good introduction to inverse reinforcement learning

Ziebart et al. AAAI ’08. Maximum Entropy Inverse Reinforcement Learning.
Introduction to probabilistic method for inverse reinforcement learning
Modern Papers: Finn et al. ICML ’16.

Guided Cost Learning. Sampling based method for MaxEnt IRL that handles
unknown dynamics and deep reward functions Wulfmeier et al. arXiv ’16.
Deep Maximum Entropy Inverse Reinforcement Learning. MaxEnt inverse RL
using deep reward functions Ho & Ermon NIPS ’16.

Generative Adversarial Imitation Learning. Inverse RL method using
generative adversarial networks
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Under review as a conference paper at ICLR 2018

META LEARNING SHARED HIERARCHIES

Kevin Frans Jonathan Ho, Xi Chen, Pieter Abbeel
Henry M. Gunn High School UC Berkeley, Department of Electrical
Work done as an intern at OpenAl Engineering and Computer Science

kevinfrans2@gmail.com

John Schulman
OpenAl

ABSTRACT

We develop a metalearning approach for learning hierarchically structured poli-
cies, improving sample efficiency on unseen tasks through the use of shared
primitives—policies that are executed for large numbers of timesteps. Specifi-
cally, a set of primitives are shared within a distribution of tasks, and are switched
between by task-specific policies. We provide a concrete metric for measuring
the strength of such hierarchies, leading to an optimization problem for quickly
reaching high reward on unseen tasks. We then present an algorithm to solve this
problem end-to-end through the use of any off-the-shelf reinforcement learning






