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What are Graphs?

Lots of information can be structured as graphs (Chemical molecule structure, 
Knowledge graph, Social Media Network)

Nodes(vertices or points) and Edges(links or lines)

Knowledge Graph

Graphs are a general language for describing and analyzing entities with 
relations/interactions

Molecule



Graphs = Nodes + Edges

What are Graphs?

Molecule Knowledge Graph



Graph: Directed vs Undirected
How the edges link the nodes allows us to distinguish between undirected graphs 
vs directed graphs

Graph G with 3 nodes

What we will 
focus on now

Undirected

Directed

Examples:
❑ Academic collaborations
❑ Friendships on Facebook

Examples:
❑ Phone Calls
❑ Following on Twitter



Adjacency Matrix - A
A represents the edges in a given graph

Ai,j = 1 if an edge exists between nodes i and j, else 0



D is a diagonal matrix, where each diagonal entry 
represents the degree of each node in a given graph

Di,i = degree(i)

Degree Matrix - D



The cat sat on the mat.

VS.

No spatial locality (unlike grids)

No rank ordering or fixed reference point

GraphML vs NLP vs CV



Why Do We Care About Learning on Graphs?

There are many different settings where we might care about learning on graphs:

● Graph classification
● Node classification
● Link prediction
● Community detection
● Graph embedding
● Graph generation



Cs224w (Jure Leskovec)

Representation Learning > Feature Engineering



Encoder-Decoder Paradigm



Encoders

 

d-dimensional embedding
Node v

Cs224w (Jure Leskovec)

Maps each node to a low-dimensional vector 



Encoder example (mapped into 2 dimensions)



Decoders

 

 

Predict Score based on embedding to match node similarity

Decoder

embedding

u

Y

Classification



Decoders

 

 

Predict Score based on embedding to match node similarity

embedding

u  lat

Link Prediction

Y

Going forward, we will only be discussing encoders!



Brief Pivot: word2vec

“During the Battle of Endor, the Death Star II’s energy 
shield was destroyed…

“In the third film, Anakin becomes Vader when…”

“Samuel L Jackson portrayed Mace Windu in the 
prequel trilogy…”

Encoder: maps words to embedding 
vectors 

List of 
sentences

Anakin

Vader

W W W W W

Anakin

Vader

These are 
what we 
optimize 
(i.e SGD)!

Can we do this on 
graphs?

(words close in sentences → close in embedding space)



DeepWalk: word2vec For Graphs

This is exactly the same optimization as word2vec, but we instead optimize over 
sequences of random walks on a graph.



DeepWalk selects the next node to traverse to in 
each random walk purely at random (unbiased)

Nodes that are close together in the random walk 
sequence should be embedded closer together 
in the embedding space!

These are the “sentences” that we generate!

Example:



node2vec: The Introduction of Bias…

Grover and Leskovec., ACM SIGKDD, 2016

Breadth First Search (BFS) {s1, s2, s3} Local microscopic view

Depth First Search (DFS) {s4, s5, s6} Global macroscopic view

Homophily

Structural equivalence

node2vec = DeepWalk + control over local vs global exploration (via 
two additional hyperparameters that we won’t discuss in detail)



GRAPH NEURAL NETWORKS



Brief Recap: Convolutional Neural Networks



Convolutional Layer in CNN

How about for 
non-Euclidean data? 
Can we do 
something similar 
with graphs?

Translation-invariant



Convolutions on Graphs?

● No fixed notion of a sliding window on a graph
○ Variable number of neighbors per node
○ Every single pixel (not in a corner) in an image is surrounded by 8 neighboring pixels



Locality vs Homophily

Graph ConvolutionsImage Convolutions

Generate next layer 
embedding vectors for each 
pixel in an input image by 
aggregating the 
transformed feature 
vectors of each of the 
pixel’s neighbors

Generate next layer 
embedding vectors for each 
node in an input graph by 
aggregating the 
transformed feature 
vectors of each of the 
node’s neighbors

Locality: you can tell a lot 
about a particular pixel 
based on the properties of 
their neighbors

Homophily: you can tell a 
lot about a particular node 
based on the properties of 
their neighbors



Locality vs Homophily

Generate next layer 
embedding vectors for each 
pixel in an input image by 
aggregating the 
transformed feature 
vectors of each of the 
pixel’s neighbors

Generate next layer 
embedding vectors for each 
node in an input graph by 
aggregating the 
transformed feature 
vectors of each of the 
node’s neighbors

Locality: you can tell a lot 
about a particular pixel 
based on the properties of 
their neighbors

Homophily: you can tell a 
lot about a particular node 
based on the properties of 
their neighbors

Same underlying principles: similarity amongst 
neighbors!

Image Convolutions Graph Convolutions



Let’s look at a single layer of a graph convolution

Thomas Kipf
PhD @ University of 

Amsterdam
Currently: Research 

scientist @ Google Brain



Aggregate

Note: Aggregation function MUST be 
permutation-invariant!

- Mean()
- Sum()
- Max()

Aggregate

Transform

Let’s choose 
Mean() for now…



Aggregate

e.g ReLU



We repeat this 
process of 
transforming 
and 
aggregating 
neighboring 
embedding 
vectors for 
every node in 
the graph



Example time!

1.

Let’s also give these 
some values…



1.

  2. 



  3. Transform!

Every node is 
transformed by 
the same weight 
matrix!!!

We also call this 
message 
passing.

1.

  2. 



  4. Define adjacency matrix:

1.

  2. 

  3. Transform!

Ai,j = 1 if an edge exists 
between i and j, else 0



Need to 
normalize!

1.

  2. 

  3. Transform!

  4. Define adjacency matrix:

  5. Aggregate!



  6. Normalize

1.

  2. 

  3. Transform!

  4. Define adjacency matrix:

  5. Aggregate!



  7. Pass through non-
linearity

1.

  2. 

  3. Transform!

  4. Define adjacency matrix:

  5. Aggregate!

  6. Normalize



1.

  2. 

  3. Transform!

  4. Define adjacency matrix:

  5. Aggregate!

  6. Normalize   7. Pass through non-
linearity



1. Transform2. Aggregate

This is the only 
thing we optimize!



With random walks, what we’re 
optimizing are the final 

embedding vectors 
themselves, not weights…

…so for every new/unseen 
node that we’re given (e.g in a 
test set), we have to use SGD 

AGAIN to optimize their 
embeddings, which is 

computationally expensive!

THIS IS A BIG 
REASON WHY WE 

USE A WEIGHT 
MATRIX!

GCN > Random Walks

Just plug test 
nodes here!



What do we do with Z?

Decoder
Final layer 

embedding 
matrix

Depends on the downstream prediction task:

- Feed Z into a MLP + Softmax decoder for node-level classification/regression

- Apply some decoder function on pairs of vectors in Z for link prediction (e.g dot product)

- For graph-level predictions (e.g classifying an entire graph), can 
concat/sum/mean all vectors in Z, and then feed this long vector into a MLP 
decode

- Just like in CNNs!



Stacking GCN Layers

Input to the next layer
Note: new weight matrix! Weight 
matrices in GNNs are 
layer-specific.

But D and A never change!



Stacking GCN Layers
Final GCN update rules:

Node-level update rule:

Graph-level update rule:

Let’s just keep adding 
more layers, right?

BIG problem!



Stacking GCN Layers
In order to calculate A’s hA

2 vector, we need to calculate hu
1 

for each u in Neighbors(A)

In order to calculate each node u’s hu
1 vector, we need to calculate hu’

0 for each u’ 
in Neighbors(u)

Therefore, number of layer in graph neural networks is a very important 
hyperparameter!

H3 looks at 
neighbors’ 
neighbors’ 

neighbors, etc…this 
becomes MASSIVE 

on large graphs

Just to calculate hA
2, 

we need to look at A’s 
neighbors’ neighbors



The over-smoothing problem

Here, we encounter the over-smoothing problem, where final-layer node embeddings (in Z) 
become highly similar.

Receptive field: the 
set of all nodes that 
are used to 
calculate an l-th 
layer embedding 
vector for a node v



Let’s look at some methods that build on GCN



GraphSAGE

Jure Leskovec
Postdoc @ Cornell

Currently: Professor @ 
Stanford

Until very recently: Chief 
Scientist @ Pinterest
Created node2vec

2 BIG problems with GCNs:

Problem 1: hv
L+1 doesn’t aggregate hv

L

Solution 1: Add self-loops! 

Problem 2: Just Mean()? How about the rest?

Solution 2: Make the aggregation function a hyperparameter!

Now v will additionally 
sum their own 

embedding vector along 
with v’s neighbors!



GraphSAGE > GCN



Kilian Weinberger
PhD @ UPENN

Currently: Professor @ 
Cornell

Also currently: Listening 
to students teach a 

CS6784 lecture

Simplifying GCNs

Graph-level update rule:

Remember this?
Get rid of the 
non-linearities! ��

Define: 

Why does this 
work so well?

The strength of GNNs comes from their ability to 
propagate node features, not from non-linearities



1. Turns out GCN doesn’t scale well to 
very large graphs due to excessive 
memory requirements. SGC 
precomputes SKH(0) and only learns a 
single weight matrix

2. Less parameters = less overfitting = 
faster!



Summary

● Graphs: Combination of nodes and edges

● Learning on graphs: Classify nodes and entire graphs, predict links or detect communities and even 
generate graphs and their embeddings

● Feature Engineering 😡 Representation Learning 😊
● Graph Encoder: Map nodes to low-dimensional embedding vectors
● Graph Decoder: Map embedding vectors to Y 
● Random Walks, DeepWalk + node2vec: word2vec on graphs, embed nearby nodes on the random walk 

closer together
● GCN: CNN on graphs, transform + aggregate neighbors. Homophily in GCNs similar to locality in CNNs.
● Over-smoothing problem: Can’t stack too many layers
● GraphSAGE: Self-loops + treat aggregation function as a hyperparameter
● SGC: No need for non-linearities, we can still get good results much faster by collapsing weights!



Next time - Transformers on graphs!



The End: Just the start for GNNs 

   GNNS   GNNS   


