
Learning On Graphs

Deepa Korani, Shagun Gupta, Cazamere Comrie, Madhav Aggarwal
* in presenting order

What are Graphs?

Lots of information can be structured as graphs (Chemical molecule structure,
Knowledge graph, Social Media Network)

Nodes(vertices or points) and Edges(links or lines)

Knowledge Graph

Graphs are a general language for describing and analyzing entities with
relations/interactions

Molecule

Graphs = Nodes + Edges

What are Graphs?

Molecule Knowledge Graph

Graph: Directed vs Undirected
How the edges link the nodes allows us to distinguish between undirected graphs
vs directed graphs

Graph G with 3 nodes

What we will
focus on now

Undirected

Directed

Examples:
❑ Academic collaborations
❑ Friendships on Facebook

Examples:
❑ Phone Calls
❑ Following on Twitter

Adjacency Matrix - A
A represents the edges in a given graph

Ai,j = 1 if an edge exists between nodes i and j, else 0

D is a diagonal matrix, where each diagonal entry
represents the degree of each node in a given graph

Di,i = degree(i)

Degree Matrix - D

The cat sat on the mat.

VS.

No spatial locality (unlike grids)

No rank ordering or fixed reference point

GraphML vs NLP vs CV

Why Do We Care About Learning on Graphs?

There are many different settings where we might care about learning on graphs:

● Graph classification
● Node classification
● Link prediction
● Community detection
● Graph embedding
● Graph generation

Cs224w (Jure Leskovec)

Representation Learning > Feature Engineering

Encoder-Decoder Paradigm

Encoders

d-dimensional embedding
Node v

Cs224w (Jure Leskovec)

Maps each node to a low-dimensional vector

Encoder example (mapped into 2 dimensions)

Decoders

Predict Score based on embedding to match node similarity

Decoder

embedding

u

Y

Classification

Decoders

Predict Score based on embedding to match node similarity

embedding

u lat

Link Prediction

Y

Going forward, we will only be discussing encoders!

Brief Pivot: word2vec

“During the Battle of Endor, the Death Star II’s energy
shield was destroyed…

“In the third film, Anakin becomes Vader when…”

“Samuel L Jackson portrayed Mace Windu in the
prequel trilogy…”

Encoder: maps words to embedding
vectors

List of
sentences

Anakin

Vader

W W W W W

Anakin

Vader

These are
what we
optimize
(i.e SGD)!

Can we do this on
graphs?

(words close in sentences → close in embedding space)

DeepWalk: word2vec For Graphs

This is exactly the same optimization as word2vec, but we instead optimize over
sequences of random walks on a graph.

DeepWalk selects the next node to traverse to in
each random walk purely at random (unbiased)

Nodes that are close together in the random walk
sequence should be embedded closer together
in the embedding space!

These are the “sentences” that we generate!

Example:

node2vec: The Introduction of Bias…

Grover and Leskovec., ACM SIGKDD, 2016

Breadth First Search (BFS) {s1, s2, s3} Local microscopic view

Depth First Search (DFS) {s4, s5, s6} Global macroscopic view

Homophily

Structural equivalence

node2vec = DeepWalk + control over local vs global exploration (via
two additional hyperparameters that we won’t discuss in detail)

GRAPH NEURAL NETWORKS

Brief Recap: Convolutional Neural Networks

Convolutional Layer in CNN

How about for
non-Euclidean data?
Can we do
something similar
with graphs?

Translation-invariant

Convolutions on Graphs?

● No fixed notion of a sliding window on a graph
○ Variable number of neighbors per node
○ Every single pixel (not in a corner) in an image is surrounded by 8 neighboring pixels

Locality vs Homophily

Graph ConvolutionsImage Convolutions

Generate next layer
embedding vectors for each
pixel in an input image by
aggregating the
transformed feature
vectors of each of the
pixel’s neighbors

Generate next layer
embedding vectors for each
node in an input graph by
aggregating the
transformed feature
vectors of each of the
node’s neighbors

Locality: you can tell a lot
about a particular pixel
based on the properties of
their neighbors

Homophily: you can tell a
lot about a particular node
based on the properties of
their neighbors

Locality vs Homophily

Generate next layer
embedding vectors for each
pixel in an input image by
aggregating the
transformed feature
vectors of each of the
pixel’s neighbors

Generate next layer
embedding vectors for each
node in an input graph by
aggregating the
transformed feature
vectors of each of the
node’s neighbors

Locality: you can tell a lot
about a particular pixel
based on the properties of
their neighbors

Homophily: you can tell a
lot about a particular node
based on the properties of
their neighbors

Same underlying principles: similarity amongst
neighbors!

Image Convolutions Graph Convolutions

Let’s look at a single layer of a graph convolution

Thomas Kipf
PhD @ University of

Amsterdam
Currently: Research

scientist @ Google Brain

Aggregate

Note: Aggregation function MUST be
permutation-invariant!

- Mean()
- Sum()
- Max()

Aggregate

Transform

Let’s choose
Mean() for now…

Aggregate

e.g ReLU

We repeat this
process of
transforming
and
aggregating
neighboring
embedding
vectors for
every node in
the graph

Example time!

1.

Let’s also give these
some values…

1.

 2.

 3. Transform!

Every node is
transformed by
the same weight
matrix!!!

We also call this
message
passing.

1.

 2.

 4. Define adjacency matrix:

1.

 2.

 3. Transform!

Ai,j = 1 if an edge exists
between i and j, else 0

Need to
normalize!

1.

 2.

 3. Transform!

 4. Define adjacency matrix:

 5. Aggregate!

 6. Normalize

1.

 2.

 3. Transform!

 4. Define adjacency matrix:

 5. Aggregate!

 7. Pass through non-
linearity

1.

 2.

 3. Transform!

 4. Define adjacency matrix:

 5. Aggregate!

 6. Normalize

1.

 2.

 3. Transform!

 4. Define adjacency matrix:

 5. Aggregate!

 6. Normalize 7. Pass through non-
linearity

1. Transform2. Aggregate

This is the only
thing we optimize!

With random walks, what we’re
optimizing are the final

embedding vectors
themselves, not weights…

…so for every new/unseen
node that we’re given (e.g in a
test set), we have to use SGD

AGAIN to optimize their
embeddings, which is

computationally expensive!

THIS IS A BIG
REASON WHY WE

USE A WEIGHT
MATRIX!

GCN > Random Walks

Just plug test
nodes here!

What do we do with Z?

Decoder
Final layer

embedding
matrix

Depends on the downstream prediction task:

- Feed Z into a MLP + Softmax decoder for node-level classification/regression

- Apply some decoder function on pairs of vectors in Z for link prediction (e.g dot product)

- For graph-level predictions (e.g classifying an entire graph), can
concat/sum/mean all vectors in Z, and then feed this long vector into a MLP
decode

- Just like in CNNs!

Stacking GCN Layers

Input to the next layer
Note: new weight matrix! Weight
matrices in GNNs are
layer-specific.

But D and A never change!

Stacking GCN Layers
Final GCN update rules:

Node-level update rule:

Graph-level update rule:

Let’s just keep adding
more layers, right?

BIG problem!

Stacking GCN Layers
In order to calculate A’s hA

2 vector, we need to calculate hu
1

for each u in Neighbors(A)

In order to calculate each node u’s hu
1 vector, we need to calculate hu’

0 for each u’
in Neighbors(u)

Therefore, number of layer in graph neural networks is a very important
hyperparameter!

H3 looks at
neighbors’
neighbors’

neighbors, etc…this
becomes MASSIVE

on large graphs

Just to calculate hA
2,

we need to look at A’s
neighbors’ neighbors

The over-smoothing problem

Here, we encounter the over-smoothing problem, where final-layer node embeddings (in Z)
become highly similar.

Receptive field: the
set of all nodes that
are used to
calculate an l-th
layer embedding
vector for a node v

Let’s look at some methods that build on GCN

GraphSAGE

Jure Leskovec
Postdoc @ Cornell

Currently: Professor @
Stanford

Until very recently: Chief
Scientist @ Pinterest
Created node2vec

2 BIG problems with GCNs:

Problem 1: hv
L+1 doesn’t aggregate hv

L

Solution 1: Add self-loops!

Problem 2: Just Mean()? How about the rest?

Solution 2: Make the aggregation function a hyperparameter!

Now v will additionally
sum their own

embedding vector along
with v’s neighbors!

GraphSAGE > GCN

Kilian Weinberger
PhD @ UPENN

Currently: Professor @
Cornell

Also currently: Listening
to students teach a

CS6784 lecture

Simplifying GCNs

Graph-level update rule:

Remember this?
Get rid of the
non-linearities! ��

Define:

Why does this
work so well?

The strength of GNNs comes from their ability to
propagate node features, not from non-linearities

1. Turns out GCN doesn’t scale well to
very large graphs due to excessive
memory requirements. SGC
precomputes SKH(0) and only learns a
single weight matrix

2. Less parameters = less overfitting =
faster!

Summary

● Graphs: Combination of nodes and edges

● Learning on graphs: Classify nodes and entire graphs, predict links or detect communities and even
generate graphs and their embeddings

● Feature Engineering 😡 Representation Learning 😊
● Graph Encoder: Map nodes to low-dimensional embedding vectors
● Graph Decoder: Map embedding vectors to Y
● Random Walks, DeepWalk + node2vec: word2vec on graphs, embed nearby nodes on the random walk

closer together
● GCN: CNN on graphs, transform + aggregate neighbors. Homophily in GCNs similar to locality in CNNs.
● Over-smoothing problem: Can’t stack too many layers
● GraphSAGE: Self-loops + treat aggregation function as a hyperparameter
● SGC: No need for non-linearities, we can still get good results much faster by collapsing weights!

Next time - Transformers on graphs!

The End: Just the start for GNNs

 GNNS GNNS

